
The Bradstreet Observatory at Eastern College                 Variable Star Lecture Notes                  8/25/09 
1 

Ephemerides of Variable Stars  by David H. Bradstreet Ph.D. (Eastern University) 
 
An ephemeris is a listing of the times when a characteristic of a changing object will take 
place, i.e., when will it be in a certain position, when will it have a certain brightness, 
when will an eclipse take place, etc.  Ephemeral means always changing or not lasting for 
very long time.  The ephemeris of a variable star is an equation that tells us when it will 
be at a certain brightness, usually deepest eclipse for an eclipsing binary.  If the star is 
well behaved, the star’s ephemeris will be a rather straightforward equation.  Let us 
assume that the star is well behaved.  We will now define some terms which we’ll need 
for the ephemeris. 
 
Period P = the time to make one complete orbit, usually expressed in days 
 
Dates are usually expressed in Julian Day numbers to avoid the usual confusion with 
leap years and calendar changes. The Julian Day number system was invented in 1583 by 
Joseph Justus Scaliger, born August 5, 1540 in Agen, France, died January 21, 1609 in 
Leiden, Holland. The Julian Day numbering system began on January 1, 4713 BC and 
starts at noon in Greenwich so that observers at night will not have the day number 
change on them while they are observing.  The conversion between regular date and JD 
can be done from tables in the Astronomical Almanac or from mathematical algorithms 
on a computer (see Meeus’ book Astronomical Algorithms). 
 
Epochal time of minimum light JD0 = time of minimum light in the light curve, usually 
the deepest eclipse (primary eclipse), as opposed to the other less deep eclipse (secondary 
eclipse). 
 
To predict the time of minimum light (primary eclipse), one needs to know a previous 
time of minimum light (JD0) and the binary’s Keplerian (orbital) period.  Suppose that 
JD0 for VW Cep is 2450596.6586, and we know from previous workers that its period is 
0.27831460 days.  The next primary eclipse of VW Cep would occur exactly one orbital 
period later, i.e., 

 

The next eclipse would occur exactly two periods from JD0, namely 
 

And of course the third eclipse after T0 would occur three periods later, i.e., 
 

We can therefore predict the time of any primary eclipse by specifying the number of 
periods past JD0 that we wish.  This number of periods is called the epoch E.  So we have 

 

If the eccentricity of the binary’s orbit is zero (i.e., the orbit is a circle), then the 
secondary eclipse occurs exactly halfway (0.5) through the cycle.  Thus we can predict 
secondary eclipses by simply specifying Epochs such as 0.5, 1.5, 2.5, etc.  If the orbit is 
eccentric, then we will need to know the specific phase of the secondary eclipse. 
 
Phase: Period Normalization 
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Typically observations take place over many nights and we will want to combine these 
nights into one complete light curve.  To do this, we introduce the concept of phase, 
representing the time of one complete orbital period.  Phase is defined from 0.0000 to 
1.0000, where this would represent the total period of the binary.  Primary eclipse is 
usually defined as phase 0.00P, secondary as 0.50P (assuming a circular orbit), running 
through one full period of 1.00P when we’d start over again, i.e., 1.00P = 0.00P.  We can 
calculate the phase of a particular observation using the binary’s ephemeris: 

 

But this time we want to solve this equation for the Epoch: 

 

The integer part of E represents the epoch of that particular observation, i.e., how many 
full cycles (periods) have passed since T0.  The decimal part of E is the phase of the 
observation, i.e., at what fractional part of the next period did this particular observation 
occur. 
 
For example, using the above ephemeris for VW Cep, let’s calculate the epoch and phase 
for 9:00 PM EDT, August 26, 1997.  First convert the EDT (daylight) to EST (standard) 
= 8:00 PM EST = 20:00 EST military time.  Now convert to UT (Universal Time) by 
adding 5 hours (the difference in longitude in hours between us and Greenwich = 25:00 
UT = 1:00 UT August 27.  This means than 13 hours have past since the Julian Day 
began (since it begins at noon in Greenwich), and 13/24 = 0.5417.  Using the Julian Day 
algorithm we find that the JD for August 26, 1997 is 2450686, so the JD for our time is 
2450686 + 0.5417 = 2450686.5417.  Calculating the epoch E and phase: 

 

So, 322 complete orbits have transpired since our JD0, (2450596.6586), and the 
fractional part of the number is the binary’s phase at 9:00 PM EDT, namely 0.9549, soon 
to be primary eclipse. 
 
To predict the phase of a binary from night to night (useful for filling in portions of a 
light curve you might be missing), calculate the phase for a given night and observation 
time: 

 

We can then just keep adding 1 to the JD and calculate E again or, more simply, add the 
amount of phase that the system changes per day.  To see how this works, consider a 
binary with a period P = 0.90 days.  Let’s assume that its ephemeris is given by: 

 
We can calculate the phase on JD2450623.7000 as 

 

So the phase of the star at 2450623.7000 is 0.2541P.  What will it be exactly one day 
later, i.e., 2450624.7000? 
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Calculating as before 

 

Note that one day later we’ve gone through somewhat more than 1 period (1 epoch).  In 
fact in one day we’ve gone through 

 

So, the phase has increased by 0.1111 over one day since the period is slightly less than 
one day.  Thus we could also have found the phase exactly one day later by simply 
adding 0.1111 to the first phase found for each successive day, i.e., 

 

What if the period is greater than 1 day?  The star’s phase will lag behind  in 

phase.  To demonstrate this, let’s do our previous example again, but this time let the 
period of the binary be P = 1.1 days. 

 

 

Note that since P > 1 day, we have not progressed one full cycle in the Epoch.  The phase 
has increased by 

 

So, to produce the next day’s phase, we add this to the original phase (or subtract 

).  But to reduce the chance of error, it is best to be consistent and 

always add . 

 
Heliocentric light time correction 
 
Although the speed of light is very fast, it is not infinite, and the incredible astronomical 
distances we are dealing with can lead to easily measurable timing effects due to light’s 
finite speed.  One such light time effect occurs because of the Earth’s orbit around the 
Sun.  Although the Earth’s semimajor axis is only 8.3 light minutes in size, this moving 
platform of an Earth can therefore be several light minutes closer to or further away from 
stars, especially those near the ecliptic.  To account for this variation, astronomers 
recalculate Julian Days as if we were observing the star from the center of the Sun, i.e., a 
Heliocentric Julian Day.  This is usually calculated by computer, and its theory and 
formula derivation are detailed in Binnendijk (1960). 
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Analyzing Period Variations 
 
The main analytical tool for studying period changes in binary stars is the so called O-C 
diagram.  After collecting a number of eclipse timings, one can analyze how a binary’s 
period is behaving by plotting observed (O) times of minimum light minus the predicted 
or calculated (C) times of minimum light (hence O-C) on the ordinate scale versus Epoch 
on the abscissa scale.  If the estimated period Pest used for the predictions (C) is exactly 
equal to the actual period P, then the value of the O-C’s would all be zero, and your plot 
would be a simple horizontal line.  Of course, that almost never happens.  Let us look a 
little more closely (mathematically) at how to understand an O-C diagram. 
 
Derivation of O-C equations 
 
O  =  time of observed minimum light 
C  =  calculated time of minimum light 
JD0 = time of minimum light at E = 0 
Pest = estimated period 
P(E) = true period of system, possibly a function of E (time) 
 
We write expressions for the observed time of minimum light O and the calculated time 
of minimum light C: 

 

Assume that the O-C residuals can be fit by a parabola: 
 

Equate the expressions for O-C: 

 

Differentiate with respect to E (E is really time): 

 

Comparing terms on both sides of the equation we find that: 

 

If P(E) is constant (i.e., not a function of E), we have: 
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The O-C diagram would be a straight line since the quadratic term a is zero.  The slope of 
the line (b) would be equal to the difference in the true period P and the estimated one 
Pest.  Thus to correct Pest one would only have to add the value of the slope to it, i.e.: 

 

 

Example: Fit to VW Cep O-C curve - 880 times of minimum light 
 
We will now apply some of the above theory to the well studied W UMa contact binary 
VW Cephei.  880 times of minimum light have been obtained for this system as of the 
summer of 1997, starting in the 1930’s.  When these timings are plotted using the 
ephemeris of Kwee (1966), we see an obvious downward-facing parabola as the first 
order effect.  

 
When a parabolic least squares is applied to these residuals, we find the following 
solution to the quadratic equation : 
 

c = -3.7923618999e-3 
b = 3.0253993533e-8 
a = -8.0584374775e-11 
r ² = 0.9820708642 (correlation coefficient) 
 



The Bradstreet Observatory at Eastern College                 Variable Star Lecture Notes                  8/25/09 
6 

Remembering that the coefficient (a) of the quadratic term is  we find: 

 

We normally convert this unit of days/cycle to sec/year: 

 
So, the greatest effect on the period of VW Cephei is an apparently steady decrease 
(negative sign, i.e., downward-facing parabola) of 0.018 sec year-1.  If the parabola were 
facing upwards, it would indicate a constantly increasing period.  This is most likely due 
to mass exchange between the components but it may also be an indication of angular 
momentum loss to the system due to magnetic braking.  The theoretical amount of 
angular momentum loss (AML) can be estimated from the equation given by Bradstreet 
and Guinan (1994): 

Calculating Angular Momentum Loss 
(AML) for VW Cephei 

 

where: 
M1 = 0.894 MO 
M2 = 0.247 MO 
q = mass ratio = M2/M1 = 0.272 
R1 = 0.93 RO 
R2 = 0.50 RO 
k2 = gyration constant = 0.10 
P = orbital period = 0.2783 days 

 

The factor of three in the observed value compared to the theoretical one may reflect 
some uncertainty in theory, but it more likely indicates that there is an additional 
evolutionary effect (like mass exchange) taking place along with the AML. 
 
Additional Effects Visible in VW Cephei’s O-C Diagram 
 
It is obvious upon inspection of the O-C diagram for VW Cephei that there is a 
systematic deviation from the parabolic fit.  In fact, VW Cephei has a third component 
star which orbits with it around a common barycenter in about 30.9 years.  This tertiary 
body has been known for quite some time from astrometry and its effect on the O-C 
diagram is quite striking.  We have bumped into light time effects when we discussed the 
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Earth’s motion.  This 30.9 year light time effect is due to the motion of VW Cephei about 
its barycenter with this third star.  As this contact binary and single star orbit each other, 
it brings VW Cep sometimes closer and sometimes further away from us with this 30.9 
year period.  Thus the timings of minimum light will oscillate because sometimes VW 
Cep is closer to us and sometimes it is further from us. 
 
Using previous workers’ (Hershey 1975: Heintz 1993) astrometric solutions to the third 
body’s orbit, we can derive our own solution to fit the 30.9 year oscillations based upon 
orbital mechanics and spherical trigonometry which exactly describe the motion of the 
third body.  A non-linear least squares based upon the Marquardt-Levenberg algorithm 
(see Numerical Recipes) was developed along with a grid-searching algorithm to find the 
best fit curve based upon the orbital mechanics to the residuals.  The curve obtained is 
shown below plotted against the residuals. 

 
The solutions for the third body along with those found by Hershey and Heintz are given 
in the following table: 

Solutions to the 3rd body orbit of VW Cep 
 

 Hershey (1975) Heintz (1993) This Paper 
semimajor axis a 12.4 AU 11.8 AU 11.8 AU (assumed) 
period P 30.45 yr 29.0 yr 30.9 yr 
periastron passage T 1966.48 1966.0 1964.0 
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eccentricity e 0.595 0.65 0.41 
inclination i 29.2° 21.0° 47.3° 
argument of periastron ω  255.5° 267.0° 205.5° 
longitude of ascending node �  0.9° 340° 340° 
mass of 3rd body M3 0.58 MO 0.6 MO 0.58 MO 

 
The semimajor axis for VW Cep itself is computed to be 3.50 AU. 
 
If the third body were the only perturbation besides the overall period decrease, then after 
subtracting the light time correction from the residuals we should see only random scatter 
about the zero level.  However, when we subtract the light time contribution we have the 
following: 

 
There is obviously some type of non-random, periodic fluctuation of these residuals 
about the zero level, especially evident in the last 10 years of data.  Concentrating just on 
these particular residuals (1986 - 1997) we fit a sinusoid to measure the approximate 
period of the variation.  Least squares indicated a period of 5.8 years with an amplitude of 
0.0033 days.  This data and the sinusoidal fit are shown in the following graph. Note that 
the last season’s residuals are not decreasing in amplitude, so this sinusoid is just a very 
rough approximation to what is actually happening. 
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The following is the abstract for the poster delivered in August 1997 in Japan at the 
International Astronomical Union (IAU) General Assembly: 
 
VW Cep is one of the brightest and longest observed short-period (P= 6.67 
hours) W UMa type binaries. It consists of G5V and K0V components 11% 
overcontact with respect to their Roche surfaces. We investigated complex 
period changes based upon 880 eclipse timings from the past 70 years, including 
12 obtained in the Summer of 1997 at Eastern College Observatory. In addition 
to the well-known 30.9 year light time effect due to the presence of a third star in 
the system, we find evidence for a long term decrease in the orbital period of 
dP/dt= -0.018 sec/yr. This decrease in period could arise from angular 
momentum loss from the binary and/or mass exchange between components.  
We also note a possible abrupt small change in period which took place in 1935.  
However, the dominant change in O-C’s over the past 70 years seems to imply a 
rather constant  
 
change in period because it can be fit reasonably well with a quadratic equation 
(i.e., parabolic fit):  
 

O-C = c + bE + aE2   
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in which the coefficient .  No cubic term was needed for the fit which 

indicates that  is zero or very small. 

 
From these timings we have also refined the properties of the tertiary component 
and re-determined its mass and orbital parameters. We subtracted out the best fit 
parabola which then presumably left us with only the 3rd body light-time effects.  
A non-linear least squares search was then used on these residuals to arrive at 
the best fit orbital elements.  After determining the best fit to these residuals, the 
light-time corrections were subtracted, leaving us small systematic deviations in 
the residual O-C's. These second order variations appear to be dynamical in 
nature and not due to the presence of a fourth body since the period of the 
variation has not remained constant over the 70 year observation interval. The 
fluctuations over the last 15 years have a period of approximately 5.8 years. 
 
Thus the Keplerian period of the binary is presently decreasing at a fairly 
constant rate of  dp/dt = -0.018 sec/yr, as well as oscillating with a ≈ 5.8 year 
period with a semiamplitude of ≈ ±0.004 days.  The apparent scatter of the 
photoelectric timings taken in the same observing season most likely results from 
starspot activity which slightly offsets the times of primary and secondary 
minimum light. The time-scale of the lower amplitude residuals (5.8 years) is 
similar to the time-scales (5-8 years) indicated by changes in the asymmetries of 
the light curves and possible cyclic changes in the system’s luminosity. The 
changes in the light curve and luminosity of the system most likely arise from 
growth and decay of starspots mainly on the more massive star of the binary.  
The starspots are believed to be of magnetic origin similar to those found in the 
chromospherically active RS CVn stars.  If this is the case, then the 5.8 year 
cycle found in the O-C residuals could be in response to a magnetic activity cycle 
operating in the system. 
 
Posted 10/12/97 
 
Copyright 1997 David H. Bradstreet 


